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Energetics of a simple microscopic heat engine
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We model a microscopic heat engine as a particle hopping on a one-dimensional lattice in a periodic
sawtooth potential, with or without load, assisted by the thermal kicks it gets from alternately placed hot and
cold thermal baths. We find analytic expressions for current and rate of heat flow when the engine operates at
steady state. Three regions are identified where the model acts either as a heat engine or as a refrigerator or as
neither of the two. At the quasistatic limit both efficiency of the engine and coefficient of performance of the
refrigerator go to that for Carnot engine and Carnot refrigerator, respectively. We investigate efficiency of the
engine at two operating conditions (at maximum power and at optimum value with respect to energy and time)
and compare them with those of the endoreversible and Carnot engines.
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I. INTRODUCTION

Even though both macroscopic as well as microscopic
heat engines work on the same thermodynamic principles,
wide-ranging studies have been done in improving the per-
formance of macroscopic heat engines [1]. At present, the
study of microscopic heat engines has received considerable
attention [2,3]. This is because of the trend in miniaturization
and the need to utilize energy resources available at micro-
scopic scales. As such, modelling microscopic heat engines
and finding how well they perform is a primary task to be
undertaken at present.

To get a first insight as to how such engines perform, it is
important to take a toy model that has the basic ingredients.
In a recent paper [4] we considered a simple model of a
Brownian heat engine and found exact analytic expressions
for quantities like current, efficiency and coefficient of per-
formance. This, in turn, enabled us to explore different fea-
tures of the engine such as efficiency at maximum power,
optimized efficiency as well as efficiency at quasistatic limit.
The present work addresses the same basic issues of a tiny
heat engine. However, here the particle moves on a discrete
lattice by hopping as opposed to a continuous Brownian mo-
tion in a viscous medium. Even though the model and its
corresponding dynamics is completely different from the one
previously studied, the results can be compared with those of
the previous work at least qualitatively. As such, this work
can be taken as an independent check of the results found in
the previous work on microscopic heat engine.

The paper is organized as follows: In Sec. II, we will first
introduce our model in the absence of external load and set
up the dynamics governing it. We will then find analytic
expressions for the steady-state current and the rate of heat
produced as a function of the model parameters. In Sec. III,
we will consider our model in the presence of an external
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load and find the steady-state current and the rate of heat
flows. In Sec. IV, expressions for the efficiency and coeffi-
cient of performance (COP) will be determined depending
on whether the engine works as a heat engine or as a refrig-
erator. Regions in the parameter space where the model
works as a heat engine, as a refrigerator and as neither of the
two will be determined. We will explore how current, effi-
ciency and COP behave as the model parameters vary. We
will also compare the efficiency of the engine at two operat-
ing conditions (at maximum power and at optimum value
with respect to energy and time) with those of endoreversible
and Carnot engines. Lastly, we summarize and conclude in
Sec. V.

II. ZERO EXTERNAL LOAD

The model we take is a modified version of the one con-
sidered by Jarzynski and Mazonka [5] in modelling Feyn-
man’s ratchet and pawl system. Mimicking the original Fey-
nman’s ratchet and pawl system [6], Jarzynski and Mazonka
[5] considered a particle in a ratchet potential which is simul-
taneously in contact with hot and cold heat reservoirs. On the
other hand, our model considers a particle in a ratchet poten-
tial which is alternately in contact with hot and cold reser-
voirs as it moves along its path.

Consider a particle that moves by hopping on a one-
dimensional lattice, with lattice spacing d, assisted by the
thermal kick it gets from periodically placed hot and cold
reservoirs along its path. The particle is also exposed to an
external discrete sawtooth potential which has the same pe-
riod as that of the reservoirs. In one cycle, the particle walks
a net displacement of three lattice sites, either to the right or
to the left. This corresponds to the particle crossing one saw-
tooth of a sawtooth potential. The potential energy at site i,
U;, where i is an integer that runs from —o to +, is given by
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FIG. 1. Plot of discrete sawtooth potential without load. Sites
with dark circles are coupled to the hot reservoir (7)) while sites
with open circles are coupled to the cold reservoir (7,). Site 1 is
labeled explicitly and d is the lattice spacing.

2)

T T,, if [i(mod)3 -1]=0,
"\ T., otherwise,

where T, and T, are the temperatures of the hot and cold

reservoirs, respectively. Figure 1 shows the values of saw-

tooth potential and of the temperature at the given lattice

sites.

The jump of the particle from one lattice site to next lat-
tice site is assumed to be random in nature. The jump prob-
ability is determined by the amount of energy it crosses and
the temperature of the heat reservoir to which it is coupled.
Accordingly, the jump probability per unit time of the par-
ticle making a jump from site i to site i+1 is given by
e ™ FTi, where AE=U,,;—U; and I is the probability that
the particle will attempt a jump per unit time. We take Bolt-
zmann'’s constant, kg, to be unity. When the particle attempts
to jump, first it decides which way to jump (either to the left
or right) with equal probability and then jumps according to
the Metropolis algorithm [7]: if the value of AE<0, then the
jump definitely takes place; if AE>0 then the jump takes
place with probability exp(-AE/T;).

The dynamics of the model can be studied by mapping the
model to a spin-1 particle system which exhibits identical
behavior [5]. Denoting the spin states, s, by (0, +1), the en-
ergy function of the spin-1 particle is defined by

E(s)=Es. (3)

The change of state of spin s corresponds to the jump of the
particle. If s changes from —1 to 0 or from O to 1 or from 1
to —1, then this is the same as the particle jumping to the
right. The reverse process corresponds to jump to the left.

The dynamics of the particle is then described by stochas-
tic jumps among the three states. The process is Markovian
and we can describe the evolution of the states with rate
equations. To the three spin states s=—1, 0 and 1 we denote
three corresponding states n=1, 2 and 3. Let the probability
for the particle to be found in state n at time ¢ be given by
p,(1). The rate equations governing the evolution of the three
states are
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d
ﬂ = E (Pnn’pn' - Pn’npn), nan, =1,2,3. (4)
dt n'#n

P,:, is the transition probability rate at which the particle,
originally in state n, makes transition to state n’. Here P, is
given by the Metropolis rule. For example,
r
2 9

—

r
Py = Ee_E/Th’ Py =—.

2
(5)

Note that state n=2 is coupled to the hot reservoir. In the
above expressions, the factor % is due to the decision for the
particle to jump either to the left or to the right. The rate
equation for the model can then be expressed as a matrix
equation
dp -

— =IRp, 6
o p (6)
where p=(py,p,,p3)". Here, R is a 3 by 3 matrix which is
given by

pm 11
2 2 2
M -1-v 1

R= = o 7
2 2 2 %
2
I
2 2

where u=e#Tc and v=¢"2Th, Note that the sum of each
column of the matrix R is zero, 2,R,,,=0. This shows that
the total probability is conserved: (d/dt)=,p,=d/dt(1”-p)
=17.('Rp)=0.

The steady state probability distribution p of Eq. (6) is
obtained by solving Rp=0. We find the normalized p to have
components given by

1

ﬁl=m, (8)
_ 2u+u’
P o )+ pr ) ®
2 2
ﬁ3:(2+V)(/L +M)—(2,U«+M). (10)

Q+ o)1 +p+p?)

The presence of the hot and cold regions along the lattice
leads to unidirectional steady state current, J. This steady
state current, J, can be found as the difference between the
current towards the right, J*, and the current towards the left,
J~, between any two states: J=J*—J~. Selecting processes
taking place between states 2 and 3, the current towards the
right, J*, is given by

J*=T(R3p»), (11

while the current towards the left, J-, is given by
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J"=T'(Ry3p3). (12)

After some algebra the explicit expression for the current J
takes a simple form

B Cu(v—p)
22+ )1+ p+pd)

(13)

In each cycle, the particle walks a net displacement of three
lattice sites, 3d. Therefore the drift velocity, v, of the particle
is

v=3dJ. (14)

Notice that the net current is to the right as long as 7,>T.
and zero when T),=T..

Let us next find the amount of heat transfer per cycle
between the hot and cold reservoirs as the particle climbs up
or down the potential. We assume the case where there is no
energy transfer via kinetic energy due to particle recrossing
of the boundary between the hot and cold reservoirs [8,9].
When the particle jumps from state 2 to state 3, it takes heat
from the hot reservoir whose amount is sufficient to climb up
the potential energy difference between the states and equal
to E. When the particle jumps from state 3 to state 2, it gives
heat to the hot reservoir by losing its potential energy and is
equal to E. Thus, the net heat per unit time taken from the

hot reservoir due to climbing up or down the potential, Qh, is
given by

0= ET(R3yp; = Ry3ps). (15)
Using Egs. (11)—(13) in Eq. (15), we get

0,=ElJ. (16)

When the particle jumps from state 3 to state 1 and from
state 2 to state 1, it gives heat to the cold reservoir. When it
jumps from state 1 to state 3 and from state 1 to state 2, it
takes heat from the cold reservoir. The net heat per unit time
given to the cold reservoir due to climbing up or down the
potential is given by

QC=EF(2R13173—2R31171+R12172—R21171)~ (17)

After substituting the values of p;’s and R;;’s, we obtain

0.=EJ. (18)

The above results show that QC=Q,1. This clearly shows that
the amount of heat taken from the hot reservoir directly goes
to the cold reservoir without doing any work. This is in con-
trast to the result we found in our previous paper [4] where
work is done against viscous medium even in the absence of
external load. In the present lattice model, the reservoirs are
placed on the lattices that are of measure zero. Hence, there
is no dissipation.

Let us now compute the rate of entropy production. The
rate of entropy production related with the flow of heat from

the hot reservoir is given by S;,z—Qh/ T, while the rate of
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FIG. 2. Plot of discrete sawtooth potential with load along with
the discrete temperature profile on the lattice.

entropy production related with the flow of heat to the cold
reservoir is S,=Q,/T,. The net rate of entropy production
given by S=5,+S, takes the form

S=J1n<ﬁ)>0. (19)
%

Notice that § is non-negative which implies that the system
is consistent with the second law of thermodynamics.

III. NONZERO EXTERNAL LOAD

Let us consider the model in the presence of constant
external load, f, added to the sawtooth potential as shown in
Fig. 2. Accordingly, the potential energy will now be
changed from U; to U;+ifd. The method of solving for
steady state behavior is the same as that for the load-free
case. We consider our model when the load, f, is greater than
zero and for Metropolis algorithm to hold, we need to limit
the range of f to 0<f<<2E/d. For this range of the load, we
find the matrix R,

pa_wo 11
2 2a 2 2
ma -1-vwb 1

R= — o 20
2 2 2 20
FT
2a 2

where a=e7¥Tc and b=¢7¥Th. Note that the sum of each
column of the matrix R is zero, which shows that the total

probability is conserved. The steady state probability ; sat-

isfies the matrix equation, Rﬁ =0. We solve for 5 and after
normalization the final results are of the form

= g 21)
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2

2ua + el
_ a
P2= 2\ (22)
(2+vb)<1 +,LLLZ+&)
a
2 2
2+ Vb)('u— + /J,a) - <2a/J,+ &>
_ a a
pP3= (23)

2

2+ vb)(l +,ua+i>
a

Using similar approach as in Sec. II, the expressions for the

steady state current, J, and the drift velocity, v, are respec-
tively found to be given by

F,u(bav— E)
a

e
2(2+ Vb)(l +ap+ —)
a

J= (24)

and
v=3dJ. (25)

When the Brownian particle walks along the potential with
additional load, it takes heat from the hot reservoir and gives
some part of it to the cold reservoir and uses the rest for
climbing up the load. The difference between the rate of heat
energy that the Brownian particle takes from the hot reser-

VOir, Qh, and the rate of heat energy that it gives to the cold

reservoir, QC, is the rate of useful work, W, that the particle
uses to lift the load; i.e.,

W=0,-0.=fv. (26)

The expressions for Q;, and Q. can be obtained by a similar
approach as in Sec. II and we find them to be given by

0,=(E+fd)J. (27)

and
Q.= (E-2fd)J. (28)

The difference, Qh—QC, will then be

0y~ Q. =3fd) = fv, (29
which is exactly equal to W as given in Eq. (26).

IV. THE MODEL AS A HEAT ENGINE, AS A
REFRIGERATOR, AND AS NEITHER OF THE TWO

To specify the model, one requires to specify the six quan-
tities: I', d, E, T,, T), and f. Taking I', d and T. fixed we still
have three parameters E, T), and f that can be varied inde-
pendently. We convert these into three dimensionless param-
eters €, 7 and N\ where e=E/T,, 7=T,/T,—1, and N\=fd/T..
In addition, we introduce a dimensionless current j=J/I". We
take 75, > T, for the rest of our work.
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FIG. 3. Plot of j versus A\ for 7=1 and e=2.

The current j is now a function of €, 7 and \. Figure 3
shows a plot of j versus A\ for fixed values of € and 7. The
figure shows that the current is positive as long as the load is
less than a certain value of . This corresponds to the region
where the model works as a heat engine. Using Egs.
(27)—(29) the efficiency of the heat engine, 7, takes the ex-
pression

0,-0, 3\

0, (e+N)’

7= (30)

On the other hand, when the load is large enough the current
becomes negative and that implies that the model works as a
refrigerator. The COP, P, of the refrigerator then takes the
expression

Pref= . QC .= (E 2)\) (31)
Qh - Qc 3h
From this equation, Eq. (31), we note that in order for the
model to function as a refrigerator the upper limit for N must
be €/2.

The set of points in the parameter space at which current
changes its direction differentiates the domain of operation

A

Neither a heat engine nor
2.5 a refrigerator region
E=4
Qc =0
al
Refrigerator region
%l S .
~— "_F_d_‘__'__
ae = B
1 gy
-..'__-"-.
. B - . .
o st Qg 7 Heat engine region
.~/.
/,/
1 2 K 4 s
T

FIG. 4. Plot showing the three regions of operation of the model
in the N-7 parameter space for e=4.
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FIG. 5. Plot showing the three regions of operation of the model
in the \-€ parameter space for 7=1.

of the model as a refrigerator from that as a heat engine.
Using the expression for J, Eq. (24), the value of A at which
the current reversal takes place is given by

€T

A= m (32)

When we evaluate the values of both 7 and P as we ap-
proach this boundary determined by Eq. (32), we find that
they are exactly equal to the respective values for the Carnot
efficiency and the Carnot COP: lim;_ y+5=(T,-T.)/T), and
lim;_o-P,,=T./(T,~T,). This clearly demonstrates that the
boundary at which current is zero corresponds to the quasi-
static limit be it from the heat engine side or from the refrig-
erator side.

In analyzing the operation of our model above, we have
identified that when

€T

0<h< —T
27+3)

(33)

the model works as a heat engine while it works as a refrig-
erator when

€T

€
— <A< .
27+3)

> (34)

Therefore, the model neither works as a heat engine nor as a
refrigerator when
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Figure 4 shows the three regions in the A-7 parameter space
in which the model operates as a heat engine, a refrigerator
and as neither of the two for fixed value of e=4. On the other
hand, Fig. 5 shows these three regions in the A-e parameter
space for fixed value of 7=1. Let us now further investigate
how the current, efficiency and performance of the refrigera-
tor behave as a function of the different parameters charac-
terizing the model. The plot of 7 versus A shows that the
efficiency, #, increases with increase in A\ until it attains its
maximum value (Carnot efficiency) as shown in Fig. 6(a).
On the other hand, the plot of P,,; versus N shows that within
the range where the model works as a refrigerator, coefficient
of performance of the refrigerator, P, decreases from its
maximum value (Carnot refrigerator) as \ increases [see Fig.
6(b)].

Figure 7 shows how the current j behaves as a function of
€. The figure shows the presence of maximum current at a
certain finite value of € for a fixed 7 and \. This point cor-
responds to maximum power delivery at which the engine
operates with maximum power efficiency, 7,,p. Let us com-
pare the value 7,p of our engine with the corresponding
value of an endoreversible engine. For endoreversible engine
which exchanges heat linearly at a finite rate with two reser-
voirs, Curzon and Ahlborn [10,11] showed that the efficiency
at maximum power, 7c4, i given by

FIG. 6. (a) Plot of 7 versus A
for €=2 and 7=1. (b) Plot of P,
versus A\ for €e=2 and 7=1.

0.5 1
0.4 0.8
0.3 0.6
c =
0.2 0.4
0.1 0.2
0 0
0 0.1 0.2 0.3 0.4 0.4 0.5
A
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FIG. 8. Plots of 7ca, Myps
Nopr> and 7mcar versus 7, where
the model engine is put to func-
tion at A=0.2 while € is fixed de-
pending on whether it is working
at either maximum power or opti-
mized efficiency.

T
T,
Nea=1- (F) (36)
h

Figure 8 shows how the efficiency of our model heat engine
when it operates with maximum power, 7,,p, and that of 7c4
behave as a function of 7. The two plots show that as 7
increases from zero the value of 7, stays less than that of
nyup Up to a certain value of 7 where they both attain the
same value. Beyond that value of 7, the value of 7.4 be-
comes larger than that of 7,,, and their difference monotoni-
cally increases with 7. When we compare the two efficien-
cies, nyp and 7cy, 7cy 1s found by assuming linear heat
conductivity while 7,,p is obtained without taking any as-
sumption. This illustrates that 7, is valid for the entire
range in the allowed parameter space while 7., is specific
and has limited significance.

Let us next compare Carnot efficiency, 7.4z, With what is
called optimized efficiency, 7opy. One extreme is for an en-
gine to perform a task extremely slowly by utilizing mini-
mum possible energy. The other extreme is to perform the
same task at the shortest possible time but at the expense of
utilizing large amount of energy. Finding the operating con-
dition where there is the best compromise between these two
extremes and evaluating its corresponding efficiency is what
we mean by optimized efficiency, 7pr-

The 7ypr for our model can be found using the argument
stated by Hernandez et al. [12]. We briefly summarized the
method of Hernandez et al. [12] in our earlier work [4]. The
optimized efficiency, nopr, lies between maximum efficiency
and efficiency under maximum power and it is given by
optimizing

Q:zv’v—wgh. (37)
T,

The plot of the dimensionless quantity w=0Q/ I'T versus € in
Fig. 9 shows that the function definitely has optimum value
at finite €. Evaluating the efficiency at this particular point in
the parameter space gives us the optimized efficiency, 7opr-
We plot nopr and 7c4x in the same Fig. 8 that we plot the

other efficiencies. The plots of 7ypr and 7-4z versus 7 show
that 7pr lies between 7,,p and 7c,x. This undeniably illus-
trates that the operation of the engine at optimized efficiency
is a compromise between fastest transport and minimum en-
ergy cost.

V. SUMMARY AND CONCLUSION

In this work, we introduced an exactly solvable model of
a heat engine with minimum ingredients. We obtained closed
form expressions for current, efficiency and COP of the
model. We showed that at quasistatic limit the values of both
efficiency and COP go to that of Carnot efficiency and Car-
not COP, respectively. We then explored the basic properties
of the microscopic heat engine by varying the parameters
describing the model. We further studied the efficiency when
the engine operates with maximum power and compared this
efficiency with those values one gets by using the finite-rate
linear heat exchange assumption of Curzon and Ahlborn
[10,11]. The results of optimized efficiencies of the model
are also reported. It is worth to note that the particle walks in
nonviscous medium. Hence the model does not work as a
heat engine in the absence of external load. In the presence

0.001
0.0005

0
-0.0005
3 -0.001
-0.0015
-0.002
-0.0025

0 0.5 1 1.5 2 2.5 3

FIG. 9. Plot of w versus € for A\=0.2 and 7=1.
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of external load, even though the model and its correspond-
ing dynamics is completely different from the one we studied
earlier, there is a qualitative agreement between this work
and the earlier work. We are of the opinion that the reason
for this agreement is because both systems are based on the
same principles of finite time thermodynamics. Therefore,
one can take this work as an independent check of the results
we found in the previous work on Brownian heat engine [4].
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